题目:输入两个正整数m和n,求其最大公约数和最小公倍数。
程序分析:
(1)最小公倍数=输入的两个数之积除于它们的最大公约数,关键是求出最大公约数;
(2)求最大公约数用辗转相除法(又名欧几里德算法)
1)证明:设c是a和b的最大公约数,记为c=gcd(a,b),a>=b,
令r=a mod b
设a=kc,b=jc,则k,j互素,否则c不是最大公约数
据上,r=a-mb=kc-mjc=(k-mj)c
可知r也是c的倍数,且k-mj与j互素,否则与前述k,j互素矛盾,
由此可知,b与r的最大公约数也是c,即gcd(a,b)=gcd(b,a mod b),得证。
2)算法描述:
第一步:a ÷ b,令r为所得余数(0≤r 第二步:互换:置 a←b,b←r,并返回第一步。
程序源代码:
#include<stdio.h> int main() { int a,b,t,r; printf("请输入两个数字:\n"); scanf("%d %d",&a,&b); if(a<b) {t=b;b=a;a=t;} r=a%b; int n=a*b; while(r!=0) { a=b; b=r; r=a%b; } printf("这两个数的最大公约数是%d,最小公倍数是%d\n",b,n/b); return 0; }
以上实例输出结果为:
请输入两个数字: 12 26 这两个数的最大公约数是2,最小公倍数是156